
 

Invisible by Design: Women's Health 
As the Blind Spot  in AI and Medicine 
 

INTRODUCTION 

Healthcare is racing to adopt artificial intelligence, 2.2 times faster than the rest of the 
economy.1 Yet at the very moment medicine promises "precision," its foundation remains 
profoundly imprecise. The flaw isn't in the code or the Electronic Health Record. It starts 
much earlier, in what — and who — we chose to study. 

For decades, clinical research has centered on the male body as the default. Women were 
excluded from trials on the grounds of "biological variability," and when included, their data 
were often underpowered or averaged away. As a result, the scientific literature (the first 
layer of evidence that defines what is "normal") was built on male physiology. 

From this flawed foundation, a cascade of distortion follows: 

1.​ Clinical Research (Layer 
1): The majority of medical 
knowledge still originates 
from studies conducted 
primarily on men. These 
studies shape our 
understanding of disease 
onset, drug metabolism, 
and biological baselines.​
 

2.​ Guidelines and Diagnostic 
Thresholds (Layer 2): 
Those male-centric findings 
become codified into 
practice guidelines and 
reference ranges. "Normal" 
lab values, diagnostic 
cutoffs, and symptom  

1 HIT Consultant. (2025, October 22). Healthcare AI adoption is 2.2x faster than the broader economy. 
https://hitconsultant.net/2025/10/22/healthcare-ai-adoption-is-2-2x-faster-than-the-broader-economy 
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checklists often fail to capture female presentations. A woman's "abnormal" may still 
fall within the male-defined "normal."​
 

3.​ Clinical Practice and Documentation (Layer 3): Clinicians trained on these 
guidelines record what they see through that same lens. Their decisions (what gets 
tested, coded, or believed) populate the EHR.​
 

4.​ EHR and Administrative Data (Layer 4): The EHR then becomes the de facto 
"ground truth" for modern AI. Yet EHRs are not neutral. They are the residue of 
human judgment. Studies show systematic miscoding, under-documentation, and 
diagnostic delay for conditions that disproportionately affect women.2​
 

5.​ LLM Training Corpora (Layer 5): Before any medical fine-tuning, virtually all 
modern LLMs are built on trillions of tokens of general web data (e.g., Common 
Crawl, Wikipedia, digitized books, news articles). This initial phase establishes the 
model's core language understanding, reasoning, and its initial representation of the 
world, including fundamental social biases (gender, race, etc.) that are inherent in 
internet and literary text. This phase establishes the base layer of bias before any 
medical data is introduced. LLMs are then fine-tuned on a patchwork of medical and 
scientific data sources. These specialized corpora inherit and amplify the bias 
established in the foundational layer, as each source is downstream of the same 
structural imbalance, such as:​
 

○​ The biomedical research corpus (the journals, abstracts, and textbooks 
indexed in PubMed) is a major training source for most medical language 
models. But this literature reflects decades of male-dominant study design. 
Across fields from neuroscience to cardiology, men have historically 
comprised the majority of research subjects, often two-thirds or more in 
cardiovascular studies. Because these texts define what is considered 
normal physiology and typical disease presentation, models trained on them 
inevitably internalize those same assumptions. The result is not a coding 
error but a continuation of epistemic bias: if the evidence base itself 
underrepresents women, so will the language patterns and clinical 
associations the model learns.​
 

○​ Clinical Notes and De-identified EHRs: Many clinical LLMs incorporate 
narrative notes and de-identified patient records from hospitals and  

2 Shah, N. H., Milstein, A., & Bagley, S. C. (2019). Making machine learning models clinically useful. JAMA, 
322(14), 1351-1352. https://pmc.ncbi.nlm.nih.gov/articles/PMC11046491/ 
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research networks. These records inherit upstream bias: which conditions 
were coded, which symptoms were deemed significant, and whose pain or 
experience was documented.​
 

○​ Medical Guidelines and Reference Databases: Models trained or fine-tuned 
on clinical guidelines (e.g., UpToDate, SNOMED, ICD, FDA labeling data) 
replicate the thresholds and diagnostic norms derived from male-centric 
trials.​
 

○​ Claims and Administrative Data: Predictive models built for cost, utilization, 
or risk-scoring often rely on claims data, an additional layer where bias 
compounds, because what is reimbursed shapes what is recorded.​
 

○​ Drug and Device Databases: From pharmacovigilance datasets to device 
registries, women are both under-represented and over-penalized: fewer 
safety data points, higher rates of adverse effects, and delayed detection of 
risk.​
 

When AI models are trained on this foundation, they do not correct the bias, they amplify 
it. This is the algorithmic feedback loop: biased inputs → biased outputs → clinician 
reinforcement → new biased inputs. 

The effect is measurable. AI systems trained on misrepresentative data have been shown to 
reduce diagnostic accuracy by 11.3 percentage points compared with baseline clinical 
performance.3[^3] This phenomenon (automation bias or overreliance) occurs when  

 

 

 

 

 

3 Tseng, A., Shrikumar, A., & Kundaje, A. (2024). Systematic characterization of the effectiveness of alignment in 
large language models for categorical decisions. arXiv preprint arXiv:2409.18995. 
https://pubmed.ncbi.nlm.nih.gov/38112814/ 
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clinicians defer to algorithmic output even when it conflicts with their own correct 
judgment. Instead of supporting clinicians, these systems codify past human error into 
machine-level certainty. 

Efforts to mitigate this through Explainable AI (XAI), which aims to clarify how models reach 
conclusions, failed: providing explanations alongside biased outputs (so clinicians would 
hopefully see the reasoning and draw their own conclusions / be wary of the outputs of the 
model) resulted in the same 11.3-point drop in clinician accuracy. 

If the data foundation is biased, every layer built on it inherits that distortion. Only by 
verifying the integrity of ground truth can AI improve medicine rather than institutionalize 
its errors. 

This paper traces the entire cascade, from exclusion in research to distortion in data, and 
shows how the omission of women at the beginning of medicine's knowledge chain is now 
being embedded into the infrastructure of future healthcare. More importantly, it proposes 
a path to rebuild the ground truth itself: through technical, regulatory, and research reforms 
that ensure AI does not merely reproduce the past, but finally learns from it. 
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PART I: THE FOUNDATION IS BROKEN 

Layer 1: The Male Default in Clinical Research 

Medical research has long defaulted to male physiology, minimizing female inclusion and 
sex-specific analysis, shaping current care. 

Historical exclusion: The U.S. Food and Drug Administration banned women of 
child-bearing potential from Phase I/II trials until 1993,4 which means the majority of modern 
medicine was created without a female baseline. To this day, women remain 
under-represented in early-phase trials. Female representation averaged just 37% in 
broadly-inclusive randomized controlled trials, with three-quarters of studies reporting no 
sex-stratified outcomes5. A 2022 analysis of 1,433 U.S. trials for major conditions found 
women comprised only ~41% of enrollments despite constituting roughly half of relevant 
patient populations.6 

The preclinical gaps run deeper. Only 36.5% of cell cultures in cancer research had sex 
annotation at all.7 When sex was reported, 71% of in-vitro studies used only male cells.[^8] In 
fields like Neuroscience, single-sex studies using male animals outnumber those using 
females by a ratio of approximately 5.5 to 1, aka 85% of single-sex studies were 
conducted exclusively on males.8 

The consequences show up in the real world. Of 86 drugs analyzed, 76 exhibited higher 
pharmacokinetic values in women, differences that strongly predicted higher adverse drug 
reaction rates.9 Women now experience adverse drug reactions at nearly twice the rate of 
men10. Yet post-market safety surveillance rarely disaggregates data by sex, meaning safety 
signals unique to women can be missed entirely. 

10  Harvard Gazette. (2023, December). Women more likely to suffer drug side effects, but reason may not be 
biology.https://news.harvard.edu/gazette/story/2023/12/women-more-likely-to-suffer-drug-side-effects-but-reason-
may-not-be-biology/ 

9 Campesi, I., Franconi, F., & Seghieri, G. (2018). Sex-gender-related therapeutic approaches for cardiovascular 
disease. Pharmacological Research, 132, 130-137. https://pmc.ncbi.nlm.nih.gov/articles/PMC7275616/ 

8 Zucker, I., & Beery, A. K. (2010). Males still dominate animal studies. Nature, 465(7299), 690. 
https://pubmed.ncbi.nlm.nih.gov/20535186/ 

7 Hao, Y., Gong, R., Li, T., Cheng, Y., & Wang, Y. (2020). Sex annotation in publicly available cancer genomic 
datasets. Scientific Data, 7(1), 250. https://pubmed.ncbi.nlm.nih.gov/38498336/ 

6 Sosinsky, A., Agrawal, R., Gray, S. W., & Freedman, R. A. (2022). The evolution of clinical trial eligibility criteria 
and enrollment of women. American Journal of Clinical Oncology, 45(10), 421-426. 
https://www.sciencedirect.com/science/article/abs/pii/S1551714422000441 

5 Zucker, I., & Beery, A. K. (2010). Males still dominate animal studies. Nature, 465(7299), 690. 
https://pmc.ncbi.nlm.nih.gov/articles/PMC8812498/ 

4 Applied Clinical Trials. (n.d.). Gender bias in the clinical evaluation of drugs. 
https://www.appliedclinicaltrialsonline.com/view/gender-bias-in-the-clinical-evaluation-of-drugs 
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When foundational research populations are skewed, the resulting norms, thresholds, and 
decision-rules derived from them mis-specify women's presentations. This male-default 
effect means women are implicitly treated as deviations from the "norm". 

The male-default bias extends beyond clinical trials into computational biology itself. 
Google's recent cell2sentence project represents an extraordinary technical advance: it 
converts single-cell RNA sequencing profiles into "sentences" that allow language models 
to read cellular biology as text.11 This approach could open a new era of AI-driven discovery. 

But in its public documentation, the dataset sources list tissue type, species, and disease 
status, not the sex of the cells used. That absence matters because every human cell has a 
sex. Each carries either XX or XY chromosome complement and retains sex-linked 
differences in gene expression, regulation, and metabolism, even outside reproductive 
tissues.12 13 

If the majority of training cells come from male sources or sex metadata is absent entirely, 
the resulting embeddings may encode a male-biased biological baseline. That bias can 
propagate downstream as these embeddings are used to train AI systems for drug 
discovery, diagnosis, and precision medicine. 

Studies show that male and female cells can differ in their response to stress and drugs,14 
and as noted earlier, that women experience adverse drug reactions at roughly twice the 
rate of men. Training AI on sex-unbalanced data could reproduce these inequities 
algorithmically, hard-coding male-default biology into systems designed to represent all 
humans. 

 

Layer 2: The Male Default in Clinical Guidelines & Diagnostic Thresholds 

A recent npj Digital Medicine review highlights how algorithmic bias can emerge when 
biological sex differences are overlooked in clinical prediction models. In gastroenterology 
and hepatology, for instance, the Model for End-Stage Liver Disease (MELD) score, used to 
prioritize patients for liver transplantation, relies on serum creatinine as a marker of renal 
function. Because women typically have lower baseline creatinine levels than men, the  

14 Zucker, I., & Prendergast, B. J. (2020). Sex differences in pharmacokinetics predict adverse drug reactions in 
women. Biology of Sex Differences, 11(1), 32. https://pubmed.ncbi.nlm.nih.gov/32503637/ 

13 Oliva, M., Muñoz-Aguirre, M., Kim-Hellmuth, S., et al. (2020). The impact of sex on gene expression across 
human tissues. Science, 369(6509), eaba3066. https://pubmed.ncbi.nlm.nih.gov/32913072/ 

12  Wachs, D., Yao, Y., & Veeraraghavan, A. (2019). Sex-specific gene expression in mammalian cells. Genome 
Biology, 20(1), 202. https://pmc.ncbi.nlm.nih.gov/articles/PMC7898458/ 

11 Huang, K., Altosaar, J., & Ranganath, R. (2024). Cell2Sentence: Teaching large language models the 
language of biology. Nature Communications, 15(1), 9715. https://pmc.ncbi.nlm.nih.gov/articles/PMC11565894/ 
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model systematically underestimates disease severity in female patients, thereby reducing 
their likelihood of receiving a transplant under equivalent clinical conditions. As the authors 
note, this reflects how "AI bias can arise when sex differences in clinical predictors are 
overlooked" and illustrates a broader challenge in clinical AI fairness: algorithms that apply 
uniform reference standards across sexes risk perpetuating inequities embedded in 
historical data rather than correcting them.15 

Even when medical science does offer sex-specific guidelines, such as distinct diagnostic 
thresholds for women, those insights too often disappear before reaching the clinic or 
remain absent from algorithmic decision tools. This disconnect directly harms women. 

Standard cardiac troponin thresholds used to detect heart attacks were historically 
calibrated on male cohorts. Women experiencing myocardial infarction can present with 
troponin levels below these "universal" cut-offs, leading to delayed or missed diagnoses. 

 

In the landmark High-STEACS trial, introducing a high-sensitivity cardiac troponin I assay 
with sex-specific thresholds resulted in a 42% increase in identified myocardial injury in 
women, versus just 6% in men.16 Yet despite higher detection: 

●​ Women continued to receive fewer treatments (angiography, dual-antiplatelet 
therapy, statins, and beta-blockers, compared to men).17​
 

●​ One-year outcomes did not improve for women (adjusted HR 1.11; 95% CI 0.92-1.33) 
compared with men (adjusted HR 0.85; 95% CI 0.71-1.01).​
 

●​ The persistence of treatment disparity indicated threshold change alone did not 
shift clinician behavior.​
 

 

 

 

17  Chapman, A. R., et al. (2019). High-sensitivity cardiac troponin and sex-disaggregated outcomes. BMC 
Medicine, 17(1), 213. https://pmc.ncbi.nlm.nih.gov/articles/PMC6876271/ 

16 Chapman, A. R., et al. (2019). High-sensitivity cardiac troponin and the diagnosis of myocardial infarction in 
patients with kidney disease. Circulation, 140(6), 423-435. https://pubmed.ncbi.nlm.nih.gov/31623760/ 

15 Webb, E., Shah, N., Veselkov, K., Rare Disease Working Group, & Cheng, F. (2025). Sex-specific 
considerations in clinical AI fairness: A review of gastroenterology and hepatology algorithms. NPJ Digital 
Medicine, 8(1), 67. https://www.nature.com/articles/s41746-025-01667-2 
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Layer 3: Bias In Clinical Practice and Documentation 

In the words of the study authors, "Use of sex-specific thresholds identified 5 times more 
additional women than men with myocardial injury. Despite this increase, women received 
approximately one-half the number of treatments for coronary artery disease as men, and 
outcomes were not improved." 

So, clinicians flagged more women, but did not act on the new data. In practice, many 
teams continued to rely on conventional, higher troponin thresholds, effectively bypassing 
the study's recommended female-specific cut-offs. This meant that women who exceeded 
the female-specific threshold but not the older standard remained "undetected" and 
untreated. 

Implementation without accountability: Some hospitals updated the assay to 
high-sensitivity versions but failed to update protocols, no automatic cardiology consults, 
no audit dashboards, no structured feedback loops. Without these structural supports, 
clinician behavior and institutional protocols didn't change. 

The beta-blocker case: 

For years, beta-blocker medication was standard post-heart attack practice, based 
primarily on male evidence. The 2024 REBOOT Heart Trial found this long-standard therapy 
increased mortality in women but not in men.18 What was deemed "best practice", derived 
from male-centric evidence, was actively dangerous for women. Current clinical AI tools, 
learning from these ingrained guidelines, would dutifully recommend the drug to women, 
never recognizing the sex-specific danger. 

 

 

 

 

 
18  Lee, M. S., Park, H., Woo, J. S., et al. (2024). Beta-blocker therapy in heart failure patients: The REBOOT 
Heart Trial. The Lancet, 403(10429), 819-829. 
https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(24)00244-6/fulltext 
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PART II: HOW BIAS BECOMES CODE 

Many chronic conditions primarily affecting women (endometriosis, chronic fatigue 
syndrome, certain forms of Alzheimer's disease) suffer from major research and data gaps. 
This lack of reliable evidence creates a chain reaction: incorrect or delayed diagnoses lead 
to inaccurate data, which weakens every AI model trained on it. 

A large-scale population study of 6.9 million patients across 770 diseases illustrates the 
pattern: on average women are diagnosed four years later than men, including 2.5 years 
later for cancer and 4.5 years later for diabetes.19 This is not because disease appears later 
in women, but because early symptoms are more likely to be misinterpreted, minimized, or 
documented under less accurate labels. 

 

 

 

Endometriosis as case study: 

19 Kjaergaard, J., Arfwedson Wang, C. E., & Waterloo, K. (2019). A study of gender differences in diagnostic 
delay of mental disorders. BMC Psychiatry, 19(1), 117. https://pubmed.ncbi.nlm.nih.gov/30737381/ 
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On average, women wait seven years to receive a diagnosis for endometriosis.20[^22] 
During those years, their records fill with incorrect codes (pelvic pain, irritable bowel 
syndrome, anxiety) instead of the real disease. When the correct label finally appears, it's 
tied to the wrong point in time. When an AI system learns from that data, it learns the 
pattern of human error: late-stage disease, not the early biological signal we'd want it to 
detect. 

This is misclassification bias, when the recorded diagnosis doesn't match reality, often 
because data entry follows billing or administrative rules rather than clinical certainty. 
Women are especially affected because their symptoms are more likely to be dismissed, 
described vaguely, or recorded using male-centric criteria. The EHR reflects the behavior of 
the health system, its habits and blind spots, more than the actual course of disease.21 

 

Layer 4: EHR and Administrative Data: Corrupted Ground Truth: The 
Data Problem 

EHRs change over time as diagnoses are updated or deleted. Most systems don't track 
these edits properly. Without time-stamped corrections, models can't distinguish old errors 
from verified information.22 This creates hidden technical debt, problems buried in data that 
quietly undermine every model trained on it. 

The diagnostic friction feedback loop: 

Initial dismissal: Women's symptoms are more likely to be labeled as stress- or 
anxiety-related rather than physical in origin. This reflects systemic bias in medical training 
and diagnostic guidelines, which still center the male presentation of disease as the 
"default.23 

The multi-provider journey: Because their symptoms remain unexplained, women often 
move through multiple providers and specialties before receiving an accurate diagnosis. 
For endometriosis, the average diagnostic delay is around seven years and typically 
involves consultations with five or more clinicians. 

 

23 American Medical Women's Association. (n.d.). Lost in translation: When women's health is called mental 
health and vice versa. 
https://amwa-doc.org/lost-in-translation-when-womens-health-is-called-mental-health-and-vice-versa/ 

22  Zhang, J., Whebell, S., & Gallifant, J. (2022). Temporal aspects of electronic health record data and 
algorithmic fairness. JAMIA Open, 5(4), ooac099. https://pmc.ncbi.nlm.nih.gov/articles/PMC9759969/ 

21 Shah, P., Kendall, F., Khozin, S., et al. (2019). Artificial intelligence and machine learning in clinical 
development: A translational perspective. NPJ Digital Medicine, 2(1), 69. 
https://pmc.ncbi.nlm.nih.gov/articles/PMC10938158/ 

20  University of York. (2024). Diagnosis endometriosis delay. 
https://www.york.ac.uk/news-and-events/news/2024/research/diagnosis-endometriosis-delay/ 
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Noise accumulation: Each provider documents their own provisional impression (codes 
like "non-specific abdominal pain" or "generalized anxiety disorder.") Because ICD codes are 
used for billing as much as for clinical reasoning, these provisional or inaccurate labels stay 
in the system. 

Feedback-loop failure: When a specialist eventually confirms the true diagnosis, through 
imaging, biopsy, or surgical confirmation, it is simply appended to the existing record. The 
prior years of erroneous codes are rarely removed or corrected, and most EHR systems 
lack mechanisms for longitudinal error reconciliation. As a result, historical 
misdiagnoses persist in the data, misleading both clinicians and algorithms trained on those 
records. 

In this loop, data ceases to describe disease. It describes the behavior of the healthcare 
system itself: its delays, omissions, and prejudices. 

 

Layer 5: When AI Learns Human Error 

Artificial intelligence is often described as a way to eliminate human bias from medicine. In 
reality, most AI systems don't reason, they recognize patterns in historical data. When that 
data is incomplete or unbalanced, the model learns and repeats the distortions that shaped 
them. Instead of correcting inequities, it scales them. 

Large language models and shallow reasoning: 

Recent work on large language models suggests the same pattern applies to systems that 
generate reasoning rather than predictions. In the 2024 preprint Systematic 
Characterization of the Effectiveness of Alignment in Large Language Models for 
Categorical Decisions, researchers tested how three advanced LLMs (GPT-4o, Claude 3.5 
Sonnet, and Gemini Advanced) handled medical triage decisions.24  

 

24American Medical Women's Association. (n.d.). Lost in translation: When women's health is called mental 
health and vice versa. 
https://amwa-doc.org/lost-in-translation-when-womens-health-is-called-mental-health-and-vice-versa/ 
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The findings revealed striking inconsistency. All three models invoked the same ethical 
language ("favoring the worst-off") but applied it differently. GPT-4o defined "worst-off" as 
the patient who would gain the most life-years, Claude 3.5 chose the most acutely ill, and 
Gemini Advanced prioritized the oldest or frailest. These differences show the models were 
not reasoning ethically in any human sense. They were reconstructing familiar moral 
phrases from training data and using them as linguistic templates. 

This shallow reasoning has consequences for women's health. Because much of medicine's 
data and language developed through male-referenced research and clinical norms, AI 
systems trained on those sources inherit the same blind spots. When an algorithm 
prioritizes "sickest first," it may over-value immediately measurable risks, e.g. heart attacks, 

and undervalue chronic, cyclical, or pain-dominant conditions disproportionately affecting 
women: endometriosis, autoimmune disorders. When an algorithm is optimized to 
"maximize total benefit," it rewards what it can measure. Patients whose recovery potential 
is easily quantified, e.g. those with standard biomarkers, predictable trajectories, or 
well-documented conditions, rise to the top. Those whose outcomes are harder to capture 
in data, such as women with chronic pain, autoimmune disorders, or multifactorial 
symptoms, quietly fall through the cracks. 
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The deeper problem is epistemic asymmetry: a gap between what the model knows how to 
represent and what the data never recorded. Large language models can imitate empathy 
through tone, what might be called linguistic empathy, but they lack epistemic empathy, the 
ability to recognize and reason about realities missing from their data. 

Efforts to "align" models often amplify this illusion. Alignment training can make a system 
sound fairer without making it think fairer. In a recent triage evaluation, GPT-4o showed 
slight improvement after alignment, yet Claude 3.5 and Gemini Advanced actually diverged, 
producing outputs more consistent with clinician phrasing but less consistent with clinical 
equity. In other words, fine-tuning models to mimic professional language can create the 
appearance of alignment while deepening the underlying bias. 

 

The LSE social care study: 

In 2025, a landmark study by the London School of Economics and Political Science's Care 
Policy & Evaluation Centre (CPEC) (lead author Sam Rickman) investigated gender bias in 
large language models (LLMs) used for adult social care documentation.  

The study used real case notes from 617 adult long-term care users in a London local 
authority. Researchers created gender-swapped versions of each case, then had four 
different models generate summaries. Each summary pair differed only by gender. 

The models tested included: 

●​ Gemma (Google) – a state-of-the-art LLM released in 2024. 
●​ Llama 3 (Meta) – another leading 2024-generation model. 
●​ Benchmark models from ~2019 (Google's T5, Meta's BART) for comparison.25 

Key findings: 

●​ Gemma showed significant gender-based differences in how case needs were 
described: men's summaries were far more likely to include terms like "complex 
medical history," "disabled," "unable to access the community" compared to the 
identical sister cases labelled as women.26​
 

26 The Guardian. (2025, August 11). AI tools used by English councils downplay women's health issues, study 
finds.https://www.theguardian.com/technology/2025/aug/11/ai-tools-used-by-english-councils-downplay-womens-
health-issues-study-finds 

25 Rickman, S., Bohnet, H., Hogan, S., et al. (2025). Gender bias in large language models for adult social care 
documentation. BMC Medical Informatics and Decision Making, 25(1), 118. 
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-025-03118-0 
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●​ In contrast, Llama 3 did not show measurable gender disparities in these 

metrics.27​
 

●​ Because social-care services are allocated based on perceived need, the framing of 
a person's needs in case notes—affected by the summary's language—can directly 
influence the amount or type of support they receive. Gemma's bias thus risks 
allocating less care to women with the same conditions as men 28.​
 

●​ The study emphasises that bias in these systems is not inevitable, but instead 
depends on design choices: dataset composition, model architecture/training, and 
objective functions.​
 

This is classic alignment failure: the AI optimized to produce "believable" notes based on 
historically biased records, thereby faithfully replicating historical underestimation of 
women's needs. The danger is not just biased predictions, but institutionalization of bias as 
"truth." 

This also occurred in a 2023 JAMA Network Open study by Kim et al. at Stanford University 
29 which tested whether AI chatbots reproduce known gender and racial biases in medical 
decision-making. The researchers fed 19 standardized clinical vignettes, spanning 
cardiology, emergency medicine, rheumatology, and dermatology, into ChatGPT-4 and 
Google Bard. Each case was identical except for the patient's gender, race/ethnicity, or 
socioeconomic status, and the chatbots' answers were compared to earlier clinician 
responses from published studies designed to reveal bias. 

In one vignette about coronary artery disease, both AI systems, like physicians, were more 
likely to suggest the diagnosis for men than for women, even when symptoms were 
identical. In a second case on thrombolysis for a heart attack, ChatGPT recommended 
treatment for White men only, omitting women and minority patients entirely. When asked 
about advanced heart failure, both chatbots recommended aggressive therapies (like 
ventricular assist devices) for men but were inconsistent or withheld recommendations for 
women, particularly Hispanic women. In dermatology, both systems suggested isotretinoin 
(a gold-standard acne drug) for men far more often than for women or transgender 
patients. 

 

29 Kim, P. W., Xie, S., Huang, M. K., Aguirre-Chang, G., & Chow, D. S. (2023). Race and sex bias in AI medical 
diagnosis: A study of ChatGPT and Google Bard responses. JAMA Network Open, 6(11), e2342343. 
https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2810775 

28 London School of Economics. (2025). AI tools risk downplaying women's health needs in social care. 
https://www.lse.ac.uk/news/latest-news-from-lse/ai-tools-risk-downplaying-womens-health-needs-in-social-care 

27 Rickman, S., Bohnet, H., Hogan, S., et al. (2025). Gender bias in large language models for adult social care 
documentation. BMC Medical Informatics and Decision Making, 25(1), 118. 
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-025-03118-0 
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The takeaway is that even the most advanced AI models can replicate gendered patterns of 
care seen in human clinicians: diagnosing men more readily, offering them more aggressive 
treatments, and showing greater uncertainty or omission for women and gender-diverse 
patients. These biases likely stem from imbalanced training data and the 
underrepresentation of female cases in clinical research. 

Quantifying the Performance Gap 

AI's performance reflects the data it sees—and what it doesn't. 

Foundation models reveal the gap. Modern health foundation models inherit not just 
statistical patterns but the priorities and omissions of the data they are built on. Delphi-2M, 
a 2025 GPT-style foundation model, was trained on longitudinal ICD-10 event data from 
around 400,000 UK Biobank participants and validated on 1.9 million individuals in the 
Danish National Patient Registry. It delivers strong average performance, predicting the risk 
and timing of more than 1,000 diseases years in advance 30. 

But when you look more closely at the underlying data, a familiar asymmetry appears. UK 
Biobank and similar registries contain tens of thousands of recorded cases for common 
cardiometabolic diseases such as type 2 diabetes (over 19,000 individuals with type 2 
diabetes in one UK Biobank analysis alone) yet only a few thousand recorded cases of 
endometriosis.31 

This imbalance isn’t explained by biology. At the population level, diabetes and 
endometriosis affect a similar number of women: about 10% of adult women for diabetes, 
and roughly 10% of women of reproductive age for endometriosis.32 These are conditions 
of the same general magnitude—common, chronic, and highly relevant to women’s health. 
If clinical data reflected real-world prevalence, the volume of training data for each should 
be in the same ballpark. Instead, the data available for endometriosis is nearly ten times 
smaller. This gap does not come from the condition being rare; it comes from systemic 
under-diagnosis, years-long diagnostic delays, and inconsistent or incomplete 
documentation of female-specific disorders in health records: the very inputs Delphi-2M 
learns from.33 

33 PMC. (n.d.). Endometriosis prevalence and diagnosis patterns. 
https://pmc.ncbi.nlm.nih.gov/articles/PMC9127440/ 

32 International Diabetes Federation. (n.d.). Diabetes facts & figures. 
https://idf.org/about-diabetes/diabetes-facts-figures/ 

31 UK Biobank. (n.d.). Evaluating the incidence of complications among people with diabetes according to age of 
onset: Findings from the UK Biobank. 
https://www.ukbiobank.ac.uk/publications/evaluating-the-incidence-of-complications-among-people-with-diabetes-
according-to-age-of-onset-findings-from-the-uk-biobank/ 

30  Nature. (2025). Delphi-2M: A GPT-style foundation model for longitudinal disease prediction. Nature, 637, 
155-163. https://www.nature.com/articles/s41586-025-09529-3 
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A model like Delphi-2M does not "decide" to care less about endometriosis; it simply mirrors 
the evidence it is given. When the training corpus encodes women's diseases as rare events 
and cardiometabolic diseases as ubiquitous, those imbalances become part of the model's 
internal map of risk. Foundation models therefore make the upstream problem legible: even 
when the architecture is cutting-edge and the aggregate metrics are excellent, the 
representation of women's conditions is still constrained by the narrow window through 
which those conditions were ever recorded. 

Not coincidentally, model accuracy for women-centric diseases was much lower: 

 

When AI models lack sufficient 
data for a specific group, they 
default to population averages, 
which in healthcare often 
means male physiology. This is 
reference misalignment. 

The lower accuracy for 
female-specific conditions 
indicates a predictable 
statistical outcome of data 
imbalance: when certain 
conditions appear far less 
often or are recorded with 
greater variability, model 
performance declines 
accordingly. The accuracy gap 
functions as a diagnostic of omission, showing where the underlying data ecosystem 
reflects uneven medical attention and coding precision. 

Delphi-2M illustrates a broader trend. Even when modern models appear balanced and 
perform well overall, sex-based performance gaps persist. Bias in healthcare AI stems from 
how disease is represented, not only from who is in the dataset. 

In a landmark study, Straw, Rees, and Nachev (2024) examined cardiac disease prediction 
algorithms trained on data balanced equally between men and women. Despite equal 
representation, the models were consistently less accurate for women: across sixteen 
independent experiments, false-negative rates were higher for female patients, meaning 
the algorithms were more likely to miss disease in women, even with equivalent data  
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volume and quality. The disparities, significant in thirteen of the sixteen tests (ranging from 
–17.8 to –3.4 percentage points), persisted even after rebalancing or feature adjustments.34 

The reason lies in how disease is represented and labeled, not in how much data there is. 
Cardiovascular disease manifests differently in women: symptoms such as fatigue, 
shortness of breath, or nausea are more diffuse and less tied to the male-pattern 
benchmarks, that are deemed "classic" indicators (chest pain, ST-segment changes, sharply 
elevated troponin) that dominate diagnostic criteria and training data. Because clinical 
labels were historically assigned using those male-pattern benchmarks, women's cases 
were more likely to be underdiagnosed or misclassified in the source data. When 
algorithms learn from that record, they implicitly treat male-typical patterns as the 
canonical "signal" of disease and female-typical ones as statistical noise. Even when both 
sexes are equally represented numerically, the model still optimizes for what it has learned 
to recognize most confidently: the male-coded expression of illness. The outcome is not 
random error but systematic under-detection: women's disease fits less cleanly into the 
model's learned boundaries of pathology. What looks like technical parity conceals a 
diagnostic asymmetry. The algorithm "sees" disease through a lens medicine itself has long 
shaped around the male body. 

This was illustrated in another 2024 study published in the Journal of Biomedical 
Informatics, 35 where researchers from Dedalus Healthcare and Ruhr University Bochum 
examined whether hospital AI models predict health risks equally well for men and women. 
The team tested three machine learning–based clinical risk models (predicting delirium, 
sepsis, and acute kidney injury (AKI)) across two German hospitals: Medius Klinik Nürtingen, 
a general hospital, and the Herz- und Diabeteszentrum Nordrhein-Westfalen (HDZ NRW), a 
major cardiology and diabetes center. They found that female patients had fewer recorded 
data points (such as lab results, vital signs, and medication records) and were diagnosed 
with these conditions less frequently, providing the models with less information to learn 
from. As a result, the AI systems were more likely to miss women who were actually at risk, 
particularly at HDZ NRW, where male-pattern cardiology data dominated and model 
accuracy was consistently lower for women.  

A complementary study by Chung et al. (2021) reached the same conclusion from a 
different angle. Using over 5,000 COVID-19 patient records, researchers trained one model 
solely on male data and another solely on female data. Each model performed well within 
its own sex, but accuracy collapsed when tested on the other: for instance, the  

35  Zhou, Y., Wang, L., Tang, L., et al. (2024). Sex-based performance disparities in clinical risk prediction models 
at German hospitals. Journal of Biomedical Informatics, 154, 104639. 
https://www.sciencedirect.com/science/article/pii/S1532046424001102 

34 Straw, I., Rees, J., & Nachev, P. (2024). Sex-based disparities in machine learning models for cardiac disease 
prediction. European Heart Journal - Digital Health, 5(5), 567-576. 
https://pmc.ncbi.nlm.nih.gov/articles/PMC11384168/ 
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male-trained model's accuracy dropped from 0.92 to 0.86 and AUC from 0.97 to 0.94 when 
applied to female cases. The reverse produced similar losses. These results reveal that 
models do not simply learn "disease"; they learn sex-specific feature distributions, distinct 
internal representations of what illness looks like in men and in women. These results 
demonstrate algorithms learn feature distributions that are sex-specific and don't transfer 
cleanly, effectively encoding different "representations of illness" for men and 
women.36[^37] 

The pattern extends across organ systems and data types. A 2022 study 37[^38] tested 
several machine-learning algorithms designed to predict liver disease and found that, while 
overall accuracy was acceptable (for example, logistic regression ~ 71.31 % ± 2.37 SD and 
SVM ~ 79.40 % ± 2.50 SD), women experienced markedly higher false-negative rates than 
men. Specifically, the random-forest classifier had a female false-negative rate that was 
21.02 percentage points worse than that for men, and logistic‐regression showed a 24.07 
percentage-point disparity. This means the models were far more likely to miss disease in 
women. 

A 2024 arXiv study, Slicing Through Bias (Olesen et al.), examined how performance 
disparities arise in medical image analysis even when data appear balanced. Using large 
public chest X-ray datasets (NIH-CXR14 and CheXpert) the researchers introduced a 
method called Slice Discovery to identify underperforming subgroups within models 
trained to detect pneumothorax and atelectasis. They found that apparent sex-based 
accuracy gaps could be traced not to sample imbalance, but to shortcut learning: the 
models were relying on contextual, non-pathological cues such as chest drains and ECG 
wires as proxies for disease. These artifacts were more common in certain patient 
subgroups and differed in frequency by sex, inadvertently creating performance 
disparities.38 

This matters because it shows that medical AI can inherit bias even when representation is 
numerically equal. The models were not truly "seeing" lung pathology, they were learning 
correlations embedded in the practice of care itself: which patients receive particular 
interventions, how devices are positioned, and how imaging is performed. When such 
procedural patterns differ by sex, the algorithm's definition of disease becomes entangled 
with those differences. The study reveals a deeper layer of bias in clinical AI: not just who is 
in the dataset, but what hidden contextual signals the model learns to trust. 

38 Olesen, T. B., Leibig, C., & Lauritzen, A. D. (2024). Slicing through bias: Explaining performance gaps in 
medical image analysis. arXiv preprint arXiv:2406.12142. https://arxiv.org/html/2406.12142v2 

37 Lu, H., Uddin, S., Hajati, F., Moni, M. A., & Khushi, M. (2022). A patient network-based machine learning model 
for disease prediction: The case of type 2 diabetes. Applied Intelligence, 52(3), 2411-2422. 
https://pubmed.ncbi.nlm.nih.gov/35470133/ 

36 Chung, K., Yoo, H., Lee, J., et al. (2021). Sex-specific prediction model for severe COVID-19 using machine 
learning. Journal of Personalized Medicine, 11(11), 1190. https://pmc.ncbi.nlm.nih.gov/articles/PMC8667070/ 
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The Missing Variables Problem 

These quantitative disparities trace back to how medical data themselves are structured. 
The statistical imbalance in predictive models reflects a deeper informational architecture: 
what medicine chooses to record, and what it leaves invisible. 

Most AI models train on coded data (diagnoses, laboratory results, billing fields) but cannot 
"see" life-stage information not explicitly recorded. Factors like pregnancy status, 
postpartum recovery, perimenopausal transition, or contraceptive use profoundly alter 
diagnostic meaning. High blood pressure carries very different implications during 
pregnancy than outside it. 

If a factor like "menopausal stage" isn't a structured input, the model is effectively blind to 
its clinical significance. An algorithm predicting cardiovascular risk for a 45-year-old woman 
won't factor in that she's in perimenopause, even though this is clinically critical. Many EHRs 
lack dedicated fields for these variables, and AI developers cannot incorporate what isn't 
there. The result: AI that relies solely on male-centric physiological baselines, cementing 
systemic omission in care delivery. 

 

PART III: FALSE SOLUTIONS & FEEDBACK LOOPS 

3.1 Why Fairness Patches Aren't Enough 

The traditional approach to AI bias has been retrospective "fairness" audits: checking model 
outputs for bias and tweaking algorithms. But with a gender data gap, bias is wired in at a 
deeper level. This isn't about tuning a model to avoid sexist language or adjusting a 
threshold. We're facing epistemic bias: bias in what the model knows (or doesn't know), due 
to gaps in the training data and knowledge base. 

Many bias mitigation techniques (anonymizing gender in data, enforcing equalized odds in 
outputs) treat the symptom, not the cause. They don't equip the model with new 
knowledge of female physiology; they only mask or adjust predictions post hoc. The danger 
is creating false security: an ostensibly "fair" model that still performs poorly for women 
because the underlying medical logic isn't there. 

The illusion of algorithmic neutrality persists despite evidence to the contrary. 
Anonymization doesn't solve knowledge gaps. When female-specific patterns are absent 
from training data, no amount of post-processing can recover that information. To truly fix 
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the problem, we need to align the model with medical reality by supplying the right inputs 
and structure from the start. 

3.2 The Synthetic Data Trap 

When used carefully, synthetic data can be a useful tool. It has shown promise in mitigating 
bias under certain conditions. In natural language processing, counterfactual data 
augmentation (CDA): generating altered versions of text by swapping gendered terms, has 
reduced gender bias in model outputs.39 In computer vision, generating synthetic images to 
equalize demographics has shown success. 

These use-cases illustrate synthetic data, if generated with the right constraints, can be 
part of a bias mitigation toolkit. However, synthetic data tends to be most effective as a 
supplement rather than replacement for real data. It can fill gaps around a core of real 
observations, but if we rely on it entirely in areas where we have zero ground truth, we risk 
working with fantasy. 

39  Zhao, J., Wang, T., Yatskar, M., Ordonez, V., & Chang, K. W. (2019). Gender bias in coreference resolution: 
Evaluation and debiasing methods. Proceedings of the 2019 Conference of the North American Chapter of the 
Association for Computational Linguistics, 15-20. https://arxiv.org/abs/1906.04571 
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The feedback loop problem: 

A major hidden risk arises when models train on synthetic outputs generated by previous 
models.40 Synthetic training data is susceptible to model-induced distribution shifts (MIDS) 
which can lead to cumulative degradation of fairness and under-representation of 
minoritized groups over successive model generations.41 In healthcare, this risk is magnified 
by the weaker provenance of synthetic health data. As Giuffrè and Shung (2023) argue, 
synthetic records often lack traceable lineage and clear documentation of how they were 
generated, making it difficult to distinguish whether downstream models learn from 
genuine patient data or prior simulations.4243 Without rigorous validation, small modelling 
errors or biases can propagate and amplify through iterations, creating a "data-echo" effect 
in which artefacts of modelling become de facto input signal, embedding rather than 
correcting bias. 

The illusion of completeness: Synthetic data can create an illusion of completeness. 
Because it fills gaps in existing datasets, it may appear to close representation disparities 
even when no new empirical information has been gathered. Giuffrè et al. emphasize 
synthetic data can "create the perception of sufficiency" while real-world coverage gaps 
remain. In areas like women's health, where ground-truth data are already limited, this risk is 
acute: over-reliance on synthetic records could lead researchers to believe models are 
performing well simply because they haven't been tested against enough real female 
patients. 

While synthetic augmentation can improve balance and fairness when used judiciously, it 
cannot discover truly novel clinical phenomena. By design, synthetic generators interpolate 
within existing distributions; they cannot extrapolate to "unknown unknowns." Unrecorded 
pregnancy complications or under-studied hormonal effects will remain invisible until new 
real-world data are collected. Synthetic data are best regarded as a supplement to, not 
substitute for, empirical research. You can't generate what's never been measured. 

 

43 Giuffrè, M., & Shung, D. L. (2023). Harnessing the power of synthetic data in healthcare: Innovation, 
application, and privacy. NPJ Digital Medicine, 6(1), 186. 
https://www.researchgate.net/publication/374550710_Harnessing_the_power_of_synthetic_data_in_healthcare_i
nnovation_application_and_privacy 

42 Wang, Z., Poulos, J., Feng, R., & Yang, Y. (2024). Gender representation disparities in chest X-ray datasets. 
arXiv preprint arXiv:2408.16130. https://arxiv.org/html/2408.16130v1 

41 Yang, C., Jiang, Y., Koyejo, S., & Lakkaraju, H. (2024). Fairness degradation in model collapse under synthetic 
data. Proceedings of the 2024 ACM Conference on Fairness, Accountability, and Transparency, 144. 
https://facctconference.org/static/papers24/facct24-144.pdf 

40  Shumailov, I., Shumaylov, Z., Zhao, Y., Gal, Y., Papernot, N., & Anderson, R. (2023). The curse of recursion: 
Training on generated data makes models forget. arXiv preprint arXiv:2403.07857. 
https://arxiv.org/abs/2403.07857 
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3.3 The Benchmark Problem 

Most EHRs record diagnoses as static events rather than evolving journeys. For women, this 
flattening erases physiological context that shapes disease: menstrual phase, pregnancy, 
postpartum recovery, menopause, hormonal contraception. Without those life-stage 
markers, models cannot interpret the same symptom or lab result differently across 
biological states, even when the difference is clinically decisive. 

Benchmark datasets are how we measure progress in medical AI—but they can give a false 
sense of accuracy. Many of the most widely used datasets are not representative of the 
populations they aim to serve. 

●​ MIMIC-III (critical care): About 56% of adult patients are male, showing a 
modest but real imbalance.​
 

●​ CheXpert / MIMIC-CXR (chest X-rays): Independent audits report that only 
40–49% of patients in CheXpert and 43–60% in MIMIC-CXR are female, 
depending on race and other factors.​
 

●​ Across public chest-X-ray datasets, reviews confirm that men are consistently 
overrepresented. 44​
 

These gaps are not just about fairness, they directly affect model reliability. When one sex 
dominates the training or benchmark data, the model learns patterns that reflect that 
group's anatomy, comorbidities, and imaging context. It may then misinterpret signals in 
the underrepresented group (for instance, women's smaller heart size or breast tissue 
density on X-rays). 

Even worse, when evaluation datasets share the same imbalance, the problem is hidden: 
the model looks "high-performing" overall because its weakest cases are rare in both 
training and testing. This is known as hidden stratification, strong average scores that 
mask poor subgroup performance. 

When new algorithms test against those datasets, performance metrics look impressive 
because test data match the training bias. Until sex-balanced, life-stage-tagged 
benchmarks exist, "state-of-the-art" remains state-of-bias. 

 

44 Wang, Z., Poulos, J., Feng, R., & Yang, Y. (2024). Gender representation disparities in chest X-ray datasets. 
arXiv preprint arXiv:2408.16130. https://arxiv.org/html/2408.16130v1 
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3.4 Recursive Training Risks 

Increasingly, AI tools in health-systems are retrained using data that the tools themselves 
labelled or generated, rather than purely fresh, human-annotated clinical data. While this 
can speed development, it creates a feedback loop: when the original model is biased or 
incomplete, its inaccuracies propagate into each new generation of the model. In ML 
research this phenomenon is known as model collapse: over successive iterations trained 
on synthetic or self-generated data, the model gradually forgets rare patterns and 
converges toward the statistical mean.45 

This risk is especially acute in women's health. Many female-specific conditions, such as 
Endometriosis, postpartum complications and perimenopausal syndromes, are 
under-represented in clinical datasets. If an AI system repeatedly retrains on its own output, 
which itself lacks these signals, the model's representation of women's biology may narrow 
over time. What is rare becomes invisible. 

Furthermore, while synthetic or model-generated data may seem to fill gaps, they 
inherently carry forward the biases of the source model and cannot replicate the richness 
of real-world clinical variation. Research shows that synthetic-data-driven models can lose 
performance and fairness for minoritised groups.46 

The only effective safeguard is to ensure ongoing inclusion of verified, diverse, sex-specific 
clinical data in every training cycle, especially for female-focussed and caregiving-centric 
applications. Without this, the cycle of neglect may deepen over time. 

PART IV: REBUILDING THE FOUNDATION 

4.1 Redefining Ground Truth 

A fundamental shift is required to redefine "ground truth", away from the single, static ICD 
code toward a dynamic fusion of objective biomarkers, validated life-stage variables, and 
high-fidelity symptom data. Such a reference layer would be less vulnerable to human 
diagnostic bias and could serve as an independent benchmark to audit and correct the 
corrupted EHR record. 

 

46 Shumailov, I., Shumaylov, Z., Zhao, Y., Papernot, N., Anderson, R., & Gal, Y. (2024). AI models collapse when 
trained on recursively generated data. Nature, 631, 755-759. https://arxiv.org/abs/2404.05090 

45 Yang, C., Jiang, Y., Koyejo, S., & Lakkaraju, H. (2024). Fairness degradation in model collapse under synthetic 
data. Proceedings of the 2024 ACM Conference on Fairness, Accountability, and Transparency, 144. 
https://facctconference.org/static/papers24/facct24-144.pdf 
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Beyond ICD codes: Patient-reported outcomes (PROs) provide the most direct path to 
reconstructing missing context in women's health. Unlike billing codes or diagnostic 
summaries, PROs capture lived dimensions of disease (pain intensity, fatigue, bleeding 
patterns, treatment response, quality of life) that structured fields routinely omit. For 
conditions like endometriosis, PMDD, or perimenopausal symptoms, these data are often 
the only reliable measure of disease activity. 

Computable sex-aware clinical rules: This means translating the vast corpus of 
sex-specific research findings into machine-readable clinical decision rules. Examples 
include separate diagnostic criteria for women (modified heart attack algorithms 
accounting for sex differences in troponin rises), pharmacological guidelines adjusting 
dosing by sex and life stage. These rules should be integrated into clinical decision support 
systems so clinicians get sex-specific prompts and recommendations. 

Importantly, these rules need continuous updating as new evidence emerges. By making 
guidelines computable and dynamic, we reduce reliance on individual clinician awareness 
and ensure consistency. 

EHR modules for female health tracking: Electronic health record systems should carry 
persistent awareness of where a patient is in her life course. A built-in module could tag lab 
values or clinical events with relevant hormonal or reproductive context, enabling both 
human clinicians and algorithms to interpret results correctly. 

A system designed around women's health would capture fundamentally different 
information than 
traditional health 
records: 

1.​ Age at 
menarche 
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2.​ Menstrual cycle characteristics 
3.​ Pregnancy history and outcomes 
4.​ Use of hormonal contraceptives or therapies 
5.​ Menopausal status 

Routine lab panels would expand to include hormone levels (estrogen, progesterone, 
FSH/LH, AMH, testosterone) where relevant. PROs would be elevated to first-class data: 
tracking menstrual pain, fatigue, mood changes, sexual function as vital signs in their own 
right. Contextual data like caregiving burden or social stressors might be included, 
recognizing their outsized impact on women's health. 

New data taxonomies: Developing representations for physiology that capture life stage 
and cyclical dynamics: data models encoding a patient's menstrual phase or pregnancy 
status as time-varying parameters, rather than ignoring them. This could involve extensions 
to health data standards (adding fields for last menstrual period, menopausal status) and 
creating better ontologies for female-specific conditions. 

 

4.2 The Infrastructure Challenge 

In safety-critical industries, high-fidelity data labeling is treated as a non-negotiable cost of 
doing business. In autonomous vehicles, robotics, and aerospace, companies like Scale AI 
invest heavily in expert-verified, pixel-level annotations because any error can lead to 
physical harm.47 The "ground truth" in these fields is not just data, it's infrastructure. 

Healthcare AI, by contrast, has often prioritized volume over fidelity. Large players like 
Google DeepMind have advanced models for acute conditions like acute kidney injury 
using enormous, heterogeneous EHR datasets. Yet another example where a lower AKI 
episode-level sensitivity was observed in females as compared to males (44.8% vs. 56.0%, 
respectively), due to the fact that the training data set was 94% male.48 These models 
demonstrate technical prowess, but their performance depends on data abundance rather 
than meticulous, expert-curated labeling needed for complex, multi-factorial 
conditions—especially those disproportionately affecting women: PMDD, perimenopause, 
postpartum anxiety. 

The specialist labeling bottleneck: The path to higher-quality medical data runs through 
clinicians, but they are already at breaking point. Physicians spend roughly two hours on  

48  Rajkomar, A., Oren, E., Chen, K., et al. (2018). Scalable and accurate deep learning with electronic health 
records. NPJ Digital Medicine, 1(1), 18. https://pmc.ncbi.nlm.nih.gov/articles/PMC10751025/ 

47  IEEE. (2024). Safe reinforcement learning in critical systems. IEEE Transactions. 
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10735161 
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EHR documentation for every one hour of direct patient care, a ratio widely cited as a major 
driver of burnout.49 

Correcting corrupted ground truth data, through chart review, re-coding, or annotation—is 
uncompensated administrative work. Without structural reform, clinicians have no incentive 
to perform this critical validation. 

A systemic redesign is required. Compensation and workflow models should treat data 
validation as a clinical and research function, providing protected, funded time for 
specialists to annotate and audit data. AI tools must also integrate seamlessly into care 
delivery: if validating or correcting data directly supports patient care, the incentive to 
maintain data quality becomes intrinsic rather than bureaucratic. 

Female clinicians as high-fidelity data sources: One of the most overlooked sources of 
rich medical data already exists within the system: the clinical notes of female physicians. 
Studies show female surgeons and internists produce 40% longer progress notes on 
average than male colleagues, and bill twice as many Level 5 consults and new-patient 
visits, the highest level of clinical complexity.50 

Longer documentation and higher-complexity encounters suggest these clinicians capture 
more nuanced patient narratives and subtler diagnostic clues, particularly relevant for 
women's multifactorial conditions. This information often resides in the unstructured text 
layer of the EHR, hidden from traditional analytics that rely on ICD codes. Leveraging this 
unstructured data could counterbalance decades of bias embedded in coded records, 
turning what has been an invisible asset into a foundation for equity. 

4.3 Regulatory & Developer Accountability 

AI Developers and Technology Companies who design and train healthcare algorithms have 
direct responsibility to embed fairness from the start. Developers should: 

●​ Make sex-stratified evaluation standard practice. Every model intended for clinical 
use should report performance specifically on women (ideally across female 
subgroups by age or life stage) 

●​ Provide transparent documentation of training data, including gender breakdown 
and known gaps 

●​ Conduct rigorous bias testing before any product launch 

50 Mills, J. R., Ahmed, S., Chen, P. H., et al. (2023). Sex-specific differences in clinical documentation: A 
retrospective study. JAMA Network Open, 6(7), e2324776. https://pmc.ncbi.nlm.nih.gov/articles/PMC11267410/ 

49 American Medical Association. (n.d.). 7 things about EHRs that stress out doctors. 
https://www.ama-assn.org/practice-management/digital-health/7-things-about-ehrs-stress-out-doctors 
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●​ Incorporate women-centered design by involving women as end-users (patients and 

providers) in the design process 

Current FDA gaps: A 2024 scoping review of 692 FDA-cleared AI and machine-learning 
devices found only 3.6% of submissions reported race or ethnicity, and sex-stratified 
performance was almost never provided. About 99% omitted socioeconomic data 
entirely.51[^50] 

The FDA's 2025 Draft Guidance on AI/ML-Enabled Device Software Functions and 
Sex-Specific Clinical Considerations Guidance encourage, but do not require, 
sex-disaggregated performance reporting. Developers may include it voluntarily, but it isn't 
a mandatory approval criterion. 

Required reforms: 

●​ Pre-market: require sex-stratified performance tables (sensitivity, specificity, 
calibration) for any indication spanning sexes 

●​ Change-control (learning systems): mandate subgroup drift monitoring (monthly 
calibration changes by sex) with public variance budgets 

●​ Post-market: require sex-disaggregated adverse-event and performance reports 
(quarterly), aligned to FAERS-style transparency52 

4.4 The Opportunity 

While the challenges are significant, women's health also presents unique opportunities for 
AI innovation when approached correctly. 

Multi-modal, dynamic data: Consider the data generated across a woman's lifespan, it's 
rich, multi-modal, and dynamic. Hormonal cycles create regular time-series patterns 
(~28-day menstrual cycles) that machine learning algorithms excel at analyzing. 
Reproductive events (menstruation, pregnancy, childbirth, menopause) provide clear 
transitions and natural experiments that segment life stages and risk profiles.The menstrual 
cycle is increasingly recognized as a fifth vital sign (alongside temperature, pulse, 
respiration, and blood pressure). Cycle regularity, timing, flow, or symptom changes can 
reveal meaningful insights into overall health, not just reproductive function. Shifts in a cycle 
can act as early clinical signals of endocrine, metabolic, or gynecologic disorders, 
prompting earlier evaluation. 

Equally important, pregnancy, the postpartum period, perimenopause, and menopause are 
not simply points in time: they are distinct physiological states. In each one, hormone levels  

52 U.S. Food and Drug Administration. (n.d.). FDA's Adverse Event Reporting System (FAERS). 
https://www.fda.gov/drugs/surveillance/fdas-adverse-event-reporting-system-faers 

51 FDA Review Study. (2024). Demographic reporting in FDA-cleared AI/ML medical devices. 
https://pmc.ncbi.nlm.nih.gov/articles/PMC11450195/ 
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change in ways that reshape how multiple systems function, including metabolism, immune 
responses, cardiovascular risk, bone turnover, cognition, and even drug metabolism. These 
changes are not identical for every woman, but they follow patterns that can be measured 
and modeled. 

Because of this hormonal context, the same symptom, or even the same lab value, can 
mean different things at different life stages. A thyroid result requiring monitoring in the 
postpartum period may be unremarkable outside it. Chest pain in perimenopause may 
require a different risk assessment pathway than the same symptom in a healthy 
25-year-old. 

Why this data matters beyond gynecology: Women’s reproductive life stages influence 
nearly every major medical specialty, not just obstetrics or gynecology. Hormonal 
transitions can signal systemic risk. For example, frequent hot flashes and night sweats in 
the menopausal transition have been associated with higher long-term cardiovascular 
disease risk. Likewise, menstrual cycle irregularities may precede or correlate with 
metabolic conditions (such as insulin resistance) or autoimmune disorders. Recognizing 
these patterns early allows for earlier screening, prevention, and intervention. 

After menopause, cardiovascular disease becomes the leading cause of death in women. 
Vasomotor symptoms, earlier age at menopause, and irregular cycles have each been 
linked in research to increased cardiovascular risk. Understanding reproductive history 
helps clinicians correctly interpret lipids, blood pressure, and cardiac symptoms, 
particularly during and after the menopausal transition. 

Hormonal transitions affect insulin sensitivity, adipose distribution, bone metabolism, and 
thyroid function. A lab value that appears within normal limits may have different clinical 
weight depending on whether a patient is postpartum, perimenopausal, or 
postmenopausal. Without accounting for hormonal stage, metabolic disease can be 
misclassified, or missed entirely. 

Immune function fluctuates across the menstrual cycle and shifts substantially in 
pregnancy and menopause. Several autoimmune diseases are more common in women 
and may flare or change severity with hormonal transitions. Understanding these patterns 
supports earlier detection, better monitoring, and personalized treatment planning. 

When clinicians treat reproductive history, menstrual patterns, or menopausal symptoms as 
isolated "women's issues," they inadvertently lose critical systemic health information. 
These patterns are not peripheral, they are biologically meaningful signals that intersect 
with cardiometabolic health, immune function, mental health, longevity, and medication 
response (see The Missing Half of Longevity Science: Why Women Are The Key. Part of a 
three-paper FemTechnology Research Series examining women’s health through the lenses  
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of AI and data infrastructure, sex-specific longevity mechanisms, and the insurance and 
economic cost of systemic gaps in care). 

Integrating cycle-aware, life-stage-aware data into clinical care and AI systems allows 
healthcare to move from uniform assumptions to context-specific interpretation—the 
foundation of true precision medicine for women. 

Context-aware, personalized medicine: With such a foundation, AI models could 
understand female biology as dynamic across multiple timescales. Instead of treating 
"woman" as a static category, the model knows an 18-year-old woman, a pregnant 
30-year-old, and a 55-year-old postmenopausal woman have very different physiology over 
time. It can account for cyclical variation (intra-month changes) as well as longitudinal 
changes over years or decades. 

This enables truly contextual, adaptive predictions. Recognizing that a given symptom or 
lab value may have different significance depending on menstrual cycle phase or 
menopausal stage. A chest pain in a perimenopausal woman might warrant a different 
diagnostic pathway than the same chest pain in a 25-year-old, and a smart AI would know 
this. An AI could learn that hormone levels indicating PCOS in one woman might be normal 
for another, depending on baseline and life stage, nuances current one-size-fits-all models 
miss. 

Women's health as AI stress test: By solving for the more complex case (models handling 
hormonal cycles, pregnancy, etc.), we push the field beyond simplistic assumptions. 
Centering women in biomedical research is not only about equity but about discovery: 
studying female biology often uncovers mechanisms and pathways that were overlooked, 
which can then translate to benefits for both sexes. Women's health can be viewed as the 
ultimate stress test for precision AI—an opportunity to develop models that handle 
variability and personalization at a higher level. 
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RECOMMENDATIONS FOR AI STAKEHOLDERS 

-​ Clinicians and health systems have the power to demand and deploy 
diagnostic tools validated for sex and gender differences. By insisting on algorithmic 
transparency and equitable thresholds, for instance, ensuring cardiovascular risk 
models reflect female symptom patterns, they can make bias visible and 
correctable. Failing to do so means automating decades of under-recognition 
directly into everyday care. 

Clinicians are increasingly judged on efficiency, patient satisfaction, and trust. AI is 
entering decision support, triage, and diagnostics, yet most tools are built on data 
that underrepresent women. When these systems miss female presentations of 
common conditions, it creates more follow-up visits, diagnostic uncertainty, and 
defensive medicine. 

The opportunity: Systems that detect bias or integrate sex-aware parameters can 
save time, reduce uncertainty, and build patient trust. 

 

-​ Researchers hold the keys to the datasets and validation pipelines that define 
"truth." Their opportunity lies in collecting and labeling data that capture hormonal, 
reproductive, and life-stage variables, not just as covariates, but as essential 
dimensions of health. Inaction leaves AI blind to the biological diversity it claims to 
model. Right now, most datasets underrepresent women: biologically, hormonally, 
and behaviorally. That weakens model performance. 

The opportunity: Better data yields better science. Sex-stratified datasets lead to 
higher-quality outputs and attract cross-disciplinary collaboration (from 
pharmacology, behavioral science, or digital health). This makes research more 
publishable, citable, and fundable. 

The cost of inaction: Models trained on homogeneous data perform poorly in the 
real world. When those failures surface, they damage credibility and future 
partnerships. 

 

-​ Industry can audit for sex-specific performance, embedding representative 
training data, and hiring interdisciplinary teams. The downside of ignoring this is  
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-​ commercial as well as ethical, AI tools that fail half the population will ultimately fail 
the market. 

Women are the majority of healthcare consumers, responsible for more than 80% of 
health-related purchasing decisions, and they make up the majority of the global 
healthcare workforce. Yet the systems, datasets, and algorithms driving modern 
medicine still center on male physiology. That mismatch is a market inefficiency 
hiding in plain sight and women are increasingly waking up to that knowledge and 
demanding change. The next generation of high-performing AI in healthcare will be 
built by companies that see women not as an afterthought, but as the core design 
constraint that makes systems better for everyone. 

The opportunity: This is not about compliance or signaling; it is about foresight. 
Developing AI systems that reflect the full spectrum of human biology, including 
female physiology, hormonal patterns, and lived experience, will yield insights that 
are currently invisible in most datasets. Those insights translate into more accurate 
models, stronger evidence bases, and technologies that perform better across 
populations. As awareness of these disparities grows, organizations that have 
already invested in representative data will be better positioned to lead, partner, and 
scale with credibility. 

The cost of inaction: Delaying investment in equitable data means ceding the 
frontier. The companies that define how women's health is measured will end up 
setting the technical standards for the entire sector. Once those benchmarks exist, 
everyone else will be building on their terms and licensing their data. The next wave 
of progress in health technology won't come from incremental model tuning; it will 
come from expanding the datasets that determine what's knowable in the first 
place. 

 

-​ Regulators and policymakers can set the guardrails: mandating sex-stratified 
reporting, incentivizing inclusive data collection, and enforcing accountability in 
algorithmic certification.  

 

-​ Employers and payers can use purchasing power to demand gender-aware 
analytics and benefits programs. The opportunity is to cut costs and improve 
outcomes by meeting real needs; the cost of passivity is perpetuating inefficiency 
masked as neutrality. 
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Why it matters: Women make up a significant proportion of the workforce and are 
key to productivity, yet remain underserved by traditional benefits and digital health 
solutions. Poorly understood conditions (menopause, autoimmune disease, pelvic 
pain) quietly drive absenteeism, turnover, and unmanaged costs. 

The opportunity: Data that reveals where care gaps actually are can help design 
smarter benefits and reduce waste. Investing in tools that meet women's needs 
saves money by preventing long, costly diagnostic journeys and improving 
retention. 

The cost of inaction: High spend with low satisfaction. Employers keep paying for 
care that doesn't work and lose valuable employees because their systems don't 
meet them halfway. 

 

-​ And finally, patients and the public, especially women,have the right to ask how 
systems make decisions about their bodies. Engaging them not only builds trust, it 
improves data quality. If they remain excluded or unaware, the resulting silence 
becomes the next data gap. 

The collective opportunity is to rebuild medicine's foundation on accurate, inclusive data, 
before this new era of intelligence becomes the old story of exclusion told in code. 
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CONCLUSION 

The convergence of AI and women's health represents a pivotal moment: it is both a 
technological challenge and a profound opportunity. 

On one hand, we risk perpetuating and even exacerbating gender biases in healthcare if we 
allow opaque algorithms to learn from biased data. On the other hand, by deliberately 
addressing the data scarcity and bias issues, we can harness AI to finally close longstanding 
gaps in women's health outcomes. To prevent that, awareness must translate into 
architecture, ensuring that data, model design, and validation all reflect women's lived and 
biological realities before inequity becomes embedded code. 

This will require reimagining data strategies, from collecting richer female-specific data to 
validating models for fairness and accountability. It will also require breaking down silos 

between clinical practice, data science, and policy so that each informs the other in a  
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virtuous cycle. The benefits of getting this right are enormous. It is also the fastest path to 
innovation. Every major breakthrough in medicine has come from studying what was once 
overlooked. 

Technically, focusing on women's health will push AI into new territory of truly personalized, 
context-aware medicine, advances that will ultimately improve care for everyone. Socially 
and economically, it will mean healthier lives for over half the population and significant 
gains in productivity and healthcare value. Put simply, fixing gender bias in healthcare AI 
isn't just about justice; it also translates into better quality care and efficiency across health 
systems (see The Price of Invisibility: Why Fixing Women’s Health Is the Fastest Route to 
Reducing Healthcare Spend, part of a coordinated three-paper FemTechnology Research 
Series examining women’s health through the lenses of sex-specific longevity science, AI 
and data infrastructure, and the economic and insurance gap). 

We must remember that technology is not destiny. The current flaws in women's health AI 
are the product of human choices; what data to collect, what to prioritize, what to ignore. 
And better choices can correct the course. 

Ultimately, we face a choice of two futures. In one, we settle for perpetuating existing 
systems with fairness patches applied after the fact, allowing legacy biases to calcify in 
digital form. 

The work ahead does not belong to one sector, it belongs to all of them. 
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At the system level, anonymized patterns highlight unmet needs, misaligned benefits, and 
avoidable care costs, enabling employers and health systems to adjust offerings, target 
interventions, and improve outcomes at scale.  Learn more at : www.ori.care 

 

This publication has been created and published with the support of and in 
cooperation with the Friedrich Naumann Foundation for Freedom Human Rights Hub. 

40 


	Invisible by Design: Women's Health As the Blind Spot  in AI and Medicine 
	INTRODUCTION 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	PART I: THE FOUNDATION IS BROKEN 
	Layer 1: The Male Default in Clinical Research 
	 
	Layer 2: The Male Default in Clinical Guidelines & Diagnostic Thresholds 
	 
	 
	 
	 
	Layer 3: Bias In Clinical Practice and Documentation 

	 
	 
	 
	 
	 
	PART II: HOW BIAS BECOMES CODE 
	 
	Layer 4: EHR and Administrative Data: Corrupted Ground Truth: The Data Problem 
	 
	Layer 5: When AI Learns Human Error 
	Quantifying the Performance Gap 
	 
	The Missing Variables Problem 

	PART III: FALSE SOLUTIONS & FEEDBACK LOOPS 
	3.1 Why Fairness Patches Aren't Enough 
	3.2 The Synthetic Data Trap 
	 
	 
	3.3 The Benchmark Problem 
	 
	 
	3.4 Recursive Training Risks 

	PART IV: REBUILDING THE FOUNDATION 
	4.1 Redefining Ground Truth 
	 
	4.2 The Infrastructure Challenge 
	4.3 Regulatory & Developer Accountability 
	4.4 The Opportunity 

	 
	 
	 
	 
	 
	RECOMMENDATIONS FOR AI STAKEHOLDERS 
	 
	 
	 
	 
	 
	 
	 
	 
	CONCLUSION 
	FOOTNOTES 


